ranges employed were $5-320 \mu \mathrm{~g}$ for 3,9 , and $13,5-80 \mu \mathrm{~g}$ for 10 , and $50-500 \mathrm{ng}$ for isoprenaline. Figure 2 is derived by drawing the best lines through the accumulated data points for increases in force and rate. All data points lie within 10% of the line for either dependent variable.
(b) Conscious Dogs. ${ }^{20,21}$ Adult beagle dogs (Pfizer colony) were prepared, under aseptic recovery surgery, with a carotid artery loop and two subcutaneous titanium studs, designed to act as permanent ECG electrodes and placed, one each, in the dorsal neck and rump areas. Following adequate time for recovery and full wound healing, each dog was placed in a canvas support within the laboratory. A strain gauge was placed around the carotid loop and recording leads attached to the two electrodes. Recordings of both the arterial pulse and the ECG were made via appropriate interfacing onto a Grass polygraph. Measurements of QA interval (the time in milliseconds between the R wave of the ECG signal and the up-stroke of the arterial pressure pulse) were made by digital computer. To assess the activity of a test substance, recordings of QA interval were made every 0.16 h from 0.5 h before to up to 4 h after the oral administration, by gavage, of a solution of the test substance. Each value of QA interval, at a given time point, represents the mean of six consecutive sets of values, each set being the mean of the values recorded in an 8 -s period. Results are expressed as the change in QA interval from the mean control (predose) value. In control animals ($n=8$), changes in QA interval of 1.5 ± 2 and $0.5 \pm 1.5 \mathrm{~ms}$ were observed at 1 and 3 h , respectively, after saline administration. Decreases in QA interval of 10,15 , and 20 ms correspond approximately to increases in $\mathrm{d} P / \mathrm{d} t \max$ of 20,45 , and 70%, respectively. A decrease in QA interval of 20 ms approaches the maximum change possible.
(20) Alabaster, C. T.; Henderson, C. G. Br. J. Pharmacol. 1982, 76, 251 P.
(21) Cambridge, D.; Whiting, M. V. Cardiovasc. Res. 1986, 20, 444.
(22) Yamanaka, M.; Saito, I.; Yamatsu, K.; Fujimoto, T. Belgian Patent 4,880,020; Chem. Abstr. 1980, 93, 220743.

Acknowledgment. We gratefully thank D. J. Greenan for $\mathrm{p} K_{\mathrm{a}}$ data and D. E. Balderson, J. Butler, S. I. Davis, T. L. Kidd, and A. G. Pomeroy for valuable technical assistance.
Registry No. 3, 102791-36-6; 4, 102791-49-1; 5, 102791-44-6; 6, 102791-50-4; 7, 102791-51-5; 8, 102791-60-6; 9, 102791-39-9; 10, 102791-41-3; 11, 102791-42-4; 12, 102791-48-0; 13, 102791-47-9; 14, 102791-45-7; 15, 118111-92-5; 16, 102791-55-9; 17, 118111-93-6; 18, 118111-94-7; 19, 99584-29-9; 20, 102791-92-4; 21, 102792-12-1; 22, 102791-96-8; 23, 118111-95-8; 24, 102792-31-4; 25, 102792-14-3; 26, 102791-93-5; 27, 102791-94-6; 28, 102791-95-7; 29, 102792-11-0; 30, 102792-10-9; 31, 23309-18-4; 32, 102792-15-4; 33, 446-33-3; 34, 118111-96-9; 35, 102792-04-1; 36, 102791-90-2; 37, 102792-08-5; 38, 102792-05-2; 39, 102792-07-4; 40, 102791-86-6; 41, 102791-88-8; 42, 102791-89-9; 43, 102792-09-6; 44, 102792-03-0; 45, 102791-91-3; 46, 102792-18-7; 47, 102791-75-3; 48, 102791-99-1; 49, 102791-83-3; 50, 102792-00-7; 51, 102792-01-8; 52, 102791-78-6; 53, 102791-80-0; 54, 102791-81-1; 55, 102791-98-0; 56, 102791-97-9; 57, 102791-84-4; 58, 102792-21-2; 59, 102792-23-4; 60, 108857-39-2; 61, 102792-24-5; 62, 108857-38-1; 63, 102792-29-0; 64, 102792-17-6; 65, 118111-97-0; 4-methylimidazole, 822-36-6; 3-methyl-4-nitroaniline, 611-05-2; trans-3-ethoxyprop-2-enoyl chloride, 99471-66-6; triethyl phosphonoacetate, 867-13-0; trans-ethyl 3-[2-amino-3-(trifluoro-methyl)-5-(2,4-dimethylimidazol-1-yl)phenyl]prop-2-enoate, 102791-70-8; 1,2-diformylhydrazine, 628-36-4; ethyl acrylate, 140-88-5; pyrazole, 288-13-1; 1,2,4-triazole, 288-88-0; 2 H -tetrazole, 288-95-9; 2-methylimidazole, 693-98-1; 4-trifluoromethylimidazole, 33468-69-8; 2,4-dimethylimidazole, 930-62-1; 4-fluoronitrobenzene, 350-46-9; 4-fluoro-(2-trifluoromethyl)nitrobenzene, 393-09-9; 1-(3-acetyl-4-amino-5-methylphenyl)-2,4-dimethylimidazole, 118111-98-1.

Supplementary Material Available: X-ray data are available for 6 -(2,4-dimethylimidazol-1-yl)-8-methyl-2(1H)-quinolinone (13) (9 pages). Ordering information is given on any current masthead page.

Acrylamide Derivatives as Antiallergic Agents. 2. ${ }^{1}$ Synthesis and Structure-Activity Relationships of

\boldsymbol{N}-[4-[4-(Diphenylmethyl)-1-piperazinyl]butyl]-3-(3-pyridyl)acrylamides

Yoshinori Nishikawa,* Tokuhiko Shindo, Katsumi Ishii, Hideo Nakamura, Tatsuya Kon, and Hitoshi Uno

Research Laboratories, Dainippon Pharmaceutical Co., Ltd., Enoki 33-94, Suita, Osaka 564, Japan. Received May 27, 1988

Abstract

A new series of 3 -(3-pyridyl)acrylamides $16,17,19$, and 26 , and 5 -(3-pyridyl)-2,4-pentadienamides $20-25$ were prepared and evaluated for their antiallergic activity. Several of these compounds exhibited more potent inhibitory activities than the parent compound la [(E) - N-[4-[4-(diphenylmethyl)-1-piperazinyl]butyl]-3-(3-pyridyl)acrylamide] against the rat passive cutaneous anaphylaxis (PCA) reaction and the enzyme 5-lipoxygenase. Particularly, (E)- N-[4-[4-(diphenylmethyl)-1-piperazinyl]butyl]-3-(6-methyl-3-pyridyl)acrylamide (17p) showed an ED_{50} value of $3.3 \mathrm{mg} / \mathrm{kg}$ po in the rat PCA test, which was one-fifth of ketotifen and oxatomide. As compared with ketotifen and oxatomide, compound 17 p (AL-3264) possessed a better balance of antiallergic properties due to inhibition of chemical mediator release, inhibition of 5-lipoxygenase, and antagonism of histamine.

The clinical success of disodium cromoglycate (DSCG) ${ }^{2}$ as a therapeutic drug for the prophylactic treatment of asthma and allergic disease has stimulated a research interest that has led to the discovery of orally, more potent antiallergic agents with desirable biological properties. We have found new, orally active antiallergic compounds having (i) inhibitory activity against the enzyme 5 -lipoxygenase, which catalyzes the generation of leukotrienes
(1) Part I of this series: Nishikawa, Y.; Shindo, T.; Ishii, K.; Nakamura, H.; Kon, T.; Uno, H. Submitted for publication to Chem. Pharm. Bull.
(2) Cox, J. S. G.; Beach, J. E.; Blair, A. M. J. N.; Clarke, A. J.; King, J.; Lee, T. B.; Loveday, D. E. E.; Moss, G. F.; Orr, T. S. C.; Ritchie, J. T.; Sheard, P. Adv. Drug. Res. 1970, 5, 115.

Chart I

($\mathrm{LTA}_{4}, \mathrm{LTB}_{4}, \mathrm{LTC}_{4}, \mathrm{LTD}_{4}$, and LTE_{4}), from arachidonic acid, (ii) inhibitory activity against the release of chemical mediators such as histamine and slow reacting substance of anaphylaxis (SRS-A) ($\mathrm{LTC}_{4}, \mathrm{LTD}_{4}$, and LTE_{4}) and (iii) antihistamine activity as well. Our previous paper reported ${ }^{1}$ that some of the β-aryl- and β-heteroarylacryl-

Table I. 1-(4-Aminobutyl)-4-[bis(substituted-phenyl)methyl]piperazines

compd	X	Y	salt	mp, ${ }^{\circ} \mathrm{C}$	recrystn solvent	yield, ${ }^{a}$ \%	formula ${ }^{\text {b }}$
3a	4-F	H	2 fumarate	190-193	EtOH	76	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{FN}_{3} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
3b	$4-\mathrm{Cl}$	H	2.5 fumarate	165-170	EtOH	72	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClN}_{3} \cdot 2.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
3 c	$4-\mathrm{OMe}$	H	2.5 fumarate	151-155	EtOH	79	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O} \cdot 2.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
3d	3-Me	H		oil ${ }^{\text {c }}$		66	
3 e	4-Me	H	2.5 fumarate	159-163	EtOH	72	$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \cdot 2.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
3 f	3,4-Me ${ }_{2}$	H		oild ${ }^{\text {d }}$		85	
3g	$4-\mathrm{Cl}$	$4-\mathrm{Cl}$	2 fumarate	130-135	EtOH	70	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
3h	4-Me	4-Me	2 fumarate	121-125	EtOH	54	$\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$

${ }^{a}$ Total yields (\%) of the crude free bases were based on the corresponding piperazines. ${ }^{b}$ All compounds were analyzed for $\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$, and halogen; analytical results were within $\pm 0.4 \%$ of the theoretical values. ${ }^{c}$ Mass spectrum (EIMS), $m / z 337$ (M^{+}). ${ }^{d}$ EIMS, $m / z 351\left(\mathrm{M}^{+}\right)$.

Scheme I

2

amides 1 with a piperazinyl group (Chart I) displayed a remarkably high activity in the rat passive cutaneous anaphylaxis (PCA) test by oral administration and, particularly, compound 1 a ($\mathrm{Ar}=3$-pyridyl, $n=4$) was the most interesting compound having the desirable properties for which we aimed.

The present study was focused on enhancing the inhibitory activity of 1a not only against the PCA reaction but also against 5 -lipoxygenase. Several of the synthesized acrylamides and 2,4-pentadienamides were more active than the parent compound la in the rat PCA test and in the in vitro inhibition of 5 -lipoxygenase. The present paper deals with syntheses and the antiallergic activity of 3-(3-pyridyl)acrylamides and 5-(3-pyridyl)-2,4-pentadienamides; the structure-activity relationships (SARs) of these compounds are also discussed.

Chemistry

The requisite amines $\mathbf{3 a - h}$ (Table I), 5a, and 5 c were prepared from the corresponding piperazines 2 or piperidines 4 via the phthalimides according to the method reported previously ${ }^{1}$ (Schemes I and II); the amine $\mathbf{5 b}$ was prepared from the nitrile derivative $\mathbf{6 b}$ by catalytic reduction with Raney nickel. The nitrile 6b was in turn prepared from 4 b via alkylation with 4-bromobutyronitrile.

3 -(3-Pyridyl)acrylic acids $8 \mathbf{a}-\mathbf{g}$ and $8 \mathrm{i}-\mathrm{w}$ (Table II) were synthesized by the routes shown in Scheme III. Thus, compounds $8 \mathrm{a}, 8 \mathrm{i}, 8 \mathrm{j}, 8 \mathrm{n}$, and 8 o were prepared by an

Scheme II a

4a-c
5a-c

6b
${ }^{a} \mathbf{a}, \mathrm{Z}=>\mathrm{CHOCHPh}_{2} ; \mathbf{b}, \mathrm{Z}=>\mathrm{CHC}(\mathrm{OH}) \mathrm{Ph}_{2} ; \mathrm{c}, \mathrm{Z}=>\mathrm{C}=\mathrm{CPh}_{2}$.
analogous method of Sohda et al. ${ }^{3}$ for the preparation of 80 , reduction of 2-(ethylthio)-5-nitropyridine to the amino derivative 70 was carried out by the use of reduced iron instead of catalytic reduction with 5% palladium-oncarbon. Compound $\mathbf{8 b}$ was prepared by the Wittig reaction starting from 2-(methylamino)-3-pyridinecarbaldehyde ($\mathbf{1 2 b}$). ${ }^{4}$ Compounds $8 \mathbf{d}, 8 \mathbf{e}$, and $8 \mathbf{f}$ were prepared from the corresponding ethyl nicotinates $9 \mathrm{~d}, 9 \mathrm{e}$, and 9 f by the McFadyne-Stevens reaction. ${ }^{5}$ The acrylic acids $8 \mathbf{c},{ }^{6} 8 \mathbf{g}$, and $8 \mathbf{p}-\mathrm{v}$ were prepared starting from the respective methyl or ethyl nicotinates 9 , which were converted to the hydroxymethyl derivatives 11 by reduction with lithium aluminum hydride or sodium bis(2-methoxyethoxy)aluminum hydride, followed by oxidation with chromium trioxide, lead tetraacetate, or active manganese dioxide and then condensation with malonic acid. Other 3-(3pyridyl)acrylic acids $8 k-m^{3}$ and $8 \mathbf{w}^{7}$ were prepared according to known procedures. The 3-(3-pyridyl)acrylic acids 8 except $8 \mathrm{~b}, 8 \mathrm{~d}$, and 8 s thus prepared were assigned the E configuration on the basis of coupling constants for the olefinic protons ($J=16 \mathrm{~Hz}$) in their NMR spectra. Compounds $8 \mathrm{~b}, 8 \mathrm{~d}$, and 8 s were deduced also to be E isomers from the NMR spectra of $17 \mathrm{~b}, \mathbf{1 7 d}$, and 17 s , which

[^0]
Scheme III ${ }^{a}$

13a-c
${ }^{a}$ (a) (1) $\mathrm{RH}, \mathrm{NaH}$, (2) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$ or reduced Fe ; (b) (1) NaNO_{2}, (2) $\mathrm{CH}_{2}=\mathrm{CHCOOMe} \mathrm{Cu}_{2} \mathrm{O}$, (3) 4 N KOH ; (c) (1) $\mathrm{NH}_{2} \mathrm{NH}_{2}$, (2) p $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}$; (d) $\mathrm{K}_{2} \mathrm{CO}_{3}$; (e) LiAlH_{4} or Vitride; (f) $\mathrm{CrO}_{3}, \mathrm{~Pb}(\mathrm{OAc})_{4}$, or active MnO_{2}; (g) $\mathrm{CH}_{2}(\mathrm{COOH})_{2}$ or (1) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOEt}$, NaH , (2) dilute KOH ; (h) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$; (i) (1) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCOOEt}, \mathrm{NaH}$, (2) dilute KOH .

Scheme IV ${ }^{\text {a }}$

15e
${ }^{a}{ }^{\text {(a) }}$ (1) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHR}^{2} \mathrm{COOEt}$, NaH , (2) dilute KOH ; (b) $\mathrm{PhCH}_{2} \mathrm{COOH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Ac}_{2} \mathrm{O}$.
were derived from $8 \mathrm{~h}, 8 \mathrm{~d}$, and 8 s , respectively. 5-(3-Pyridyl)-2,4-pentadienoic acids 13a-c (Table II) were prepared by the Wittig reaction of the corresponding 3pyridinecarbaldehydes 12 with triethyl phosphonocrotonate (Scheme III). The stereochemistry of $13 \mathrm{a}-\mathrm{c}$ was assigned the E, E configuration by the coupling constants for the olefinic protons ($J=$ nearly 15 Hz) in the NMR spectra. 3-(3-Pyridyl)propionic acids 14a ($\mathrm{R}=\mathrm{H}$) and 14b were prepared by catalytic reduction of the corresponding 3-(3-pyridyl)acrylic acids with 5% palladium-on-carbon.

3-(3-Pyridyl) acrylic acids $\mathbf{1 5 a}, \mathbf{1 5 b},{ }^{8} \mathbf{1 5 c}, \mathbf{1 5 d}$, and $15 f$ (Table II) were prepared by the Wittig reaction of 3 acetylpyridine, 3-pyridinecarbaldehyde, and 6-methyl-3pyridinecarbaldehyde (12p) (Scheme IV). (E)-2-Phenyl-3-(3-pyridyl)acrylic acid (15e) was prepared from 3-pyridinecarbaldehyde and phenylacetic acid according to the literature. ${ }^{9}$ Compounds $\mathbf{1 5 a - d}$ and $15 f$ were assigned the E configuration by quantitative analysis of the nuclear Overhauser effects in their NMR spectra.

3 -(3-Pyridyl)acrylamides $16,17,19$, and 26, 3-(3pyridyl) propionamides 18a and 18b (Chart II), and 5-(3-pyridyl)-2,4-pentadienamides 20-25 listed in Tables IIIVII were prepared by condensation of the corresponding
(8) Freemann, F.; Chang, G. A.; Kappos, J. C.; Sumarta, L. J. Org. Chem. 1987, 52, 1460.
(9) Clarke, F. H.; Felock, G. A.; Silvermann, G. B.; Watmick, C. M. J. Org. Chem. 1962, 27, 533 .

Chart II

amines with 3-(3-pyridyl)acrylic acid and the carboxylic acids 8 and 13-15. 3-(3-Pyridyl)acrylamides 16, 17, and 26 were assigned the E configuration by their NMR spectra, which showed a coupling constant of 16 Hz for the olefinic protons. 5-(3-Pyridyl)-2,4-pentadienamides 20-25 were assigned the E, E configuration by their NMR spectra. 3-(3-Pyridyl)acrylamides 19a-f, prepared from (E)-3-(3pyridyl)acrylic acids $\mathbf{1 5 a}-\mathrm{f}$ under mild conditions, were deduced to be E isomers.

Pharmacological Results and Discussion

Compounds 16-26 (Tables III-VII) were evaluated for their antiallergic activity in the rat PCA assay by oral administration 1 h before antigenic challenge and compared with the parent compound la.

The effect of substitution at both phenyl groups of 1a on the activity was frst examined (Table III). Introduction of a halogen such as fluoro (16a) or chloro (16b) or a methoxy (16c) group into the para position of one of the phenyl rings caused no increase in activity. On the other hand, introduction of a methyl group into the para position (16e) of one of the phenyl rings caused a marked increase in activity, whereas introduction of the methyl group into the meta position (16d) resulted in a decrease in activity. However, introduction of the methyl group into both para positions of the two phenyl groups (16h) lowered the activity. Besides, introduction of the methyl group into both meta and para positions of one of the phenyl rings (16f) reduced the activity not only below the p-methyl derivative 16e but also below the m-methyl derivative 16d.

The effect of substitution on the pyridine ring of 1a is shown in Table IV. Although no clear SARs were observed, several compounds showed potent anti-PCA ac-

Table II. 3-(3-Pyridyl)acrylic Acids and 5-(3-Pyridyl)-2,4-pentadienoic Acids

compd	R	R^{1}	R^{2}	n	procedure ${ }^{\text {a }}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	recrystn solvent ${ }^{b}$	yield, ${ }^{\text {c }}$ \%	formula ${ }^{\text {d }}$
8a	$2-\mathrm{Cl}$	H	H	1	A	195-199	A	15^{e}	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{2} \cdot 0.167 \mathrm{H}_{2} \mathrm{O}$
8b	2-NHMe	H	H	1	B	f		18	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
8 c	$2-\mathrm{Me}$	H	H	1	C	218-2198	A	25	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}$
8d	5-F	H	H	1	D	h		8	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FNO}_{2}$
8 e	$5-\mathrm{Cl}$	H	H	1	D	195-197	A	22	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{2}$
8 f	$5-\mathrm{Br}$	H	H	1	D	207-210	A	12	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{2}$
8 g	5-OMe	H	H	1	C	280-281	A, B	33	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}$
8 ${ }^{\text {i }}$	$5-\mathrm{OH}$	H	H	1					
81	$6-\mathrm{Cl}$	H	H	1	A	241-244	A	9^{e}	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClNO}_{2}$
8j	$6-\mathrm{OMe}$	H	H	1	A	235-240	A, C	26	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$
8k	$6-\mathrm{OEt}$	H	H	1	A	175-177 ${ }^{\text {j }}$	A	31	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$
81	$6-\mathrm{O}-n-\mathrm{Pr}$	H	H	1	A	172-173 ${ }^{k}$	C	23	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$
8 m	6-O-n-pentyl	H	H	1	A	134-135	C	22	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$
8n	$6-\mathrm{OPh}$	H	H	1	A	204-206	A	21	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3}$
80	6-SEt	H	H	1	A	157-159	A	11	$\mathrm{C}_{10} \mathrm{~N}_{11} \mathrm{NO}_{2} \mathrm{~S}$
8p	$6-\mathrm{Me}$	H	H	1	E	213-214	A	39	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}$
8 q	$6-n-\mathrm{Pr}$	H	H	1	E	140-141	B, D	9	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$
8r	$6-i-\mathrm{Pr}$	H	H	1	F	179-181	D	57	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$
8 s	$6-n-\mathrm{Bu}$	H	H	1	E	m		48	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$
8 t	$6-\mathrm{Ph}$	H	H	1	C	204-206	A, B	39	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}$
8 u	2-Me, 6-Me	H	H	1	C	206-208	D	21	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$
8 v	$5-\mathrm{Me}, 6-\mathrm{Me}$	H	H	1	F	230-234	A	68	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$
8w		H	H	1	F	228-231 ${ }^{\circ}$	A	25	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$
13a	H	H	H	2	B	195-197	C	40	$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}$
13b	6-Me	H	H	2	B	249-250	C	38	$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$
13c		H	H	2	B	230 dec	C	61	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$
15a	H	Me	H	1	B	146-147	A, B	23	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}$
15b	H	H	Me	1	B	185-187 ${ }^{\text {P }}$	C	74	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}$
15c	H	H	Et	1	B	105-108	q	23	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$
15d	H	H	$n-\mathrm{Pr}$	1	B	85-87	q	33	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
15e	H	H	Ph	1	G	190-192	A	31	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}$
15 f	$6-\mathrm{Me}$	H	Me	1	B	154-155	D	21	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$

${ }^{a}$ Capital letters refer to the procedures in the Experimental Section. ${ }^{b} \mathrm{~A}=\mathrm{EtOH}, \mathrm{B}=n$-hexane, $\mathrm{C}=\mathrm{MeOH}, \mathrm{D}=i$-PrOH, $\mathrm{E}=$ toluene, $\mathrm{F}=\mathrm{Et}_{2} \mathrm{O}$, and $\mathrm{G}=\mathrm{MeCN}$. ${ }^{c}$ Total yields (\%) of the crude acids were based on the starting materials. ${ }^{d}$ See footnote b in Table I. ${ }^{e}$ Total yields $(\%)$ of the crude acids were based on the amino derivatives. ${ }^{f}$ EIMS, $178\left(\mathrm{M}^{+}\right) .{ }^{8}$ Lit. ${ }^{6} \mathrm{mp} 214^{\circ} \mathrm{C} .{ }^{h} \mathrm{EIMS}, 167\left(\mathrm{M}^{+}\right)$. ${ }^{i}$ This compound was not synthesized because 17 h was derived from 17 g . ${ }^{j} \mathrm{Lit}^{3}{ }^{3} \mathrm{mp} 182-183^{\circ} \mathrm{C}$. ${ }^{k} \mathrm{Lit}^{3}{ }^{3} \mathrm{mp} 173-174^{\circ} \mathrm{C} .{ }^{l} \mathrm{Lit.}^{3} \mathrm{mp} 136-137{ }^{\circ} \mathrm{C} .{ }^{m} \mathrm{EIMS}, 205$ $\left(\mathrm{M}^{+}\right)$. ${ }^{n}$ The structure of the 3 -pyridyl moiety was illustrated. ${ }^{\circ}{ }^{\text {Lit. }}{ }^{7} \mathrm{mp} 220-221{ }^{\circ} \mathrm{C}$. ${ }^{\circ} \mathrm{Lit}^{8}{ }^{8} \mathrm{mp} 189-191{ }^{\circ} \mathrm{C}$. ${ }^{q}$ Washed with water. ${ }^{r}$ Lit. ${ }^{9} \mathrm{mp}$ $197-200^{\circ} \mathrm{C}$.
tivity. Introduction of the methyl group into the 2 - and/or 6 -position(s) of the pyridine ring ($17 \mathrm{c}, 17 \mathrm{p}$, and 17 u) tended to enhance activity; particularly, compound 17 p bearing the methyl group at the 6 -position showed the greatest activity in this series. The bulkier substituents at the 6 -position such as propyl (17q), isopropyl (17r), and butyl (17s) groups, however, seemed to reduce the activity. We expected that 16 i (Table III) would be more active than 17 p because 16 e was more active than 1a. However, introduction of the methyl group into the pyridine ring of 16e caused no enhancement in activity. Decreasing order of activity for substituents at the 5 -position of the pyridine ring was $\mathrm{Cl}, \mathrm{F} \geq \mathrm{H}>\mathrm{Br}>\mathrm{OH}>\mathrm{OMe}$ and at the 6 -position was $\mathrm{Me}>\mathrm{H}>\mathrm{Cl} \geq \mathrm{OPh}, n-\mathrm{Pr} \geq \mathrm{OMe}>n-\mathrm{Bu} \geq \mathrm{SEt}$ $\geq 0-n$-pentyl $>0-n-\mathrm{Pr}, \mathrm{Ph}$. Compound 17 p showed the highest activity and the activities of 17 d and 17 e were comparable to that of $\mathbf{1 a}$; the others were less active than 1a.

The effect of saturation of the double bond in the acryloyl moiety was examined (Table IV). The propionamides 18 a and 18 b (Chart II) had reduced activity when compared with 1a and $17 \mathbf{p}$, respectively. In addition, 18 b did not show inhibitory activity against 5 -lipoxygenase at a concentration of $10 \mu \mathrm{M}$. Accordingly, the acryloyl moiety in this series seems to play an important role in inhibition against the rat PCA reaction and 5 -lipoxygenase.
The effect of substitution of alkyl and phenyl groups at the α - and β-positions of the acryloyl moiety is shown in Table V. Introduction of methyl (19b) and ethyl (19c) groups into the α-position increased the activity as compared with 1a, whereas introduction of the methyl group (19a) into the β-position and a phenyl group into the α position caused no increase in activity. Introduction of a bulkier alkyl group such as propyl (19d) into the α-position reduced the activity below la. Therefore, we expected that introduction of the methyl group (19f) into the α-position

Table III. N-[4-[4-(Substituted-diphenylmethyl)-1-piperazinyl]butyl]-3-(3-pyridyl)acrylamides

compd	R	X	Y	salt	procedure ${ }^{\text {a }}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	formula ${ }^{\text {b }}$	recrystn solvent ${ }^{c}$	yield, \%	rat PCA test: \% inhibition, $20 \mathrm{mg} / \mathrm{kg}$ po
$1 \mathbf{a}$	H	H	H							$62.3{ }^{\text {d }}$
16a	H	4-F	H	3 oxalate	H	97-100	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{FN}_{4} \mathrm{O} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{e}$	D	41	$53.8{ }^{\text {d }}$
16b	H	$4-\mathrm{Cl}$	H	3 oxalate	H	83-86	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClN}_{4} \mathrm{O} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	A	31	19.9
16c	H	$4-\mathrm{OMe}$	H	2 oxalate	H	94-97	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	A	24	$40.9{ }^{\text {d }}$
16d	H	3-Me	H	3 oxalate	H	82-85	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	A	21	19.0'
16 e	H	4-Me	H		H	114-117	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	E	57	$82.9{ }^{\text {d }}$
16 f	H	3,4-Me ${ }_{2}$	H		H	g	h		22	5.4
16 g	H	$4-\mathrm{Cl}$	$4-\mathrm{Cl}$	2 oxalate	H	100-104	$\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	A	29	5.4
16h	H	4-Me	4-Me		H	g	h		29	20.2
16 i	Me	4-Me	H	4 oxalate	H	126-131	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O} \cdot 4 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	A	44	$73.9{ }^{\text {d }}$
oxatomide										$42.2{ }^{\text {d }}$

${ }^{a}$ See footnote a in Table II. ${ }^{b}$ See footnote b in Table I. ${ }^{\text {c }}$ See footnote b in Table II. ${ }^{d} p<0.01$, significantly different from the vehicle control. ${ }^{e} \mathrm{~N}$: calcd, 7.36; found, 6.86. ${ }^{f} p<0.05 .{ }^{8}$ Isolated as an oil. ${ }^{h}$ Satisfactory high-resolution mass spectral data were obtained.
Table IV. N-[4-[4-(Diphenylmethyl)-1-piperazinyl]butyl]-3-(3-pyridyl)acrylamides

compd	R	salt	procedure ${ }^{\text {a }}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	formula ${ }^{\text {b }}$	recrystn solvent ${ }^{c}$	yield, \%	rat PCA test: \% inhibition $20 \mathrm{mg} / \mathrm{kg}$ po
1 a	H							$62.3{ }^{\text {d }}$
17a	$2-\mathrm{Cl}$	3 oxalate	H	108-109	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClN}_{4} \mathrm{O} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	A, D	34	$39.3{ }^{\text {d }}$
17b	2-NHMe	2 tartrate	I	110-114	$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	A, F	64	$45.2{ }^{\text {e }}$
17c	$2-\mathrm{Me}$	1.5 tartrate	H	99-103	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O} \cdot 1.5 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	A, F	33	$68.8{ }^{\text {d }}$
17d	5-F		H	128-129	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{FN}_{4} \mathrm{O}$	B, E	27	$65.0{ }^{\text {d }}$
17 e	$5-\mathrm{Cl}$		H	122-124	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClN}_{4} \mathrm{O}$	G	37	$66.4{ }^{\text {d }}$
17 f	$5-\mathrm{Br}$		H	133-134	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BrN}_{4} \mathrm{O}$	G	25	$47.5{ }^{\text {d }}$
17 g	$5-\mathrm{OMe}$	1.5 tartrate	H	90-95	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 1.5 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	A, F	32	7.6
17h	$5-\mathrm{OH}$		J	186-188	$\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{2}$	C, G	20	$28.8{ }^{\text {e }}$
17 i	$6-\mathrm{Cl}$		H	162-164	$\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{ClN}_{4} \mathrm{O}$	B, D	38	$49.3{ }^{\text {d }}$
17j	$6-\mathrm{OMe}$		H	153-155	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2}$	G	43	41.0^{e}
17k	6-OEt	3 oxalate	H	100-105	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	D	33	33.9
171	$6-\mathrm{O}-n-\mathrm{Pr}$		H	144-145	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2}$	G	24	7.5
17 m	6-O-n-pentyl		K	$80-81$	$\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2}$	G	28	$14.9{ }^{e}$
17 n	$6-\mathrm{PPh}$		H	145-147	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2}$	D	13	$45.6{ }^{e}$
170	6-SEt		H	137-140	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{OS}$	E	35	$18.6{ }^{\text {e }}$
17p	6-Me		L	129-131	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}$	G	70	$81.9^{\text {d }}$
17 q	$6-n-\mathrm{Pr}$		K	138-140	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}$	G	41	44.4
17 r	$6-i-\mathrm{Pr}$	2 tartrate	K	102-106	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	A, F	55	38.9
17s	$6-n-\mathrm{Bu}$		K	121-123	$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	G	26	22.2
17t	$6-\mathrm{Ph}$		H	155-156	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}$	G	44	3.2
17 u	2-Me, 6-Me	2 tartrate	H	105-110	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	A, F	34	$66.8{ }^{\text {d }}$
17v	$5-\mathrm{Me}, 6-\mathrm{Me}$	2 tartrate	K	105-111	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	A, F	58	$40.5{ }^{\text {d }}$
17w		3 oxalate	H	163-166	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	A, B	40	17.0^{e}
17x	$4-\mathrm{CH}_{2} \mathrm{OH}, 5-\mathrm{OH}, 6-\mathrm{Me}$		M	133-134	$\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{3}$	C, G	24	$53.7{ }^{\text {d }}$
18a	H	fumarate	I	151-153	$\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	C, G	68	28.1
18b	Me		I	126-127	$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}$	G	37	24.9
oxatomide								$42.2{ }^{\text {d }}$

${ }^{a}$ See footnote a in Table II. ${ }^{b}$ See footnote b in Table I. ${ }^{c}$ See footnote b in Table II. ${ }^{d} p<0.01 .{ }^{e} p<0.05 .{ }^{f}$ See footnote n in Table III.
of the acryloyl moiety of 17 p would cause an increase in activity. Compound 19f, however, was weaker than 17 p and 19 b .

It is interesting to note that, as described above, single methyl substitution at the 4-position of one of the phenyl rings (16 e), at the 2 - or 6 -position of the pyridine ring (17 c and 17 p), or at the α-position of the acryloyl moiety (19b)
increased the activity in comparison with 1a but second methyl substitution at these positions ($16 \mathrm{~h}, 16 \mathbf{i}, 17 \mathrm{u}$, and 19f) caused no increase in activity when compared with the monomethyl compounds.

In Table VI are listed compounds with a 2,4 -pentadienoyl moiety in the place of the acryloyl group. As in the earlier work ${ }^{1}$ with N-[[4-(diphenylmethyl)-1-

Table V. α - and β-Substituted N-[4-[4-(Diphenylmethyl)-1-piperazinyl]butyl]-3-(3-pyridyl)acrylamides

compd	R	R^{1}	R^{2}	salt	procedure ${ }^{\text {a }}$	mp, ${ }^{\circ} \mathrm{C}$	formula ${ }^{\text {b }}$	recrystn solvent ${ }^{c}$	yield, \%	rat PCA test: \% inhibition $20 \mathrm{mg} / \mathrm{kg}$ po
1a	H	H	H							$62.3^{\text {d }}$
19a	H	Me	H	2 fumarate	L	137-140	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	A	27	$52.2{ }^{\text {d }}$
19b	H	H	Me		L	120-122	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}$	G	34	$78.9{ }^{\text {d }}$
19 c	H	H	Et	1.5 fumarate	I	137-141	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O} \cdot 1.5 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	A, F	47	$67.8{ }^{\text {d }}$
19d	H	H	$n-\mathrm{Pr}$		I	e	f		77	$44.2{ }^{\text {d }}$
19e	H	H	Ph	2 oxalate	I	82-85	$\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	A, F	27	$58.0{ }^{\text {d }}$
19 f	Me	H	Me		I	133-135	$\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}$	G	39	$58.2{ }^{\text {d }}$
oxatomide										$42.2{ }^{\text {d }}$

${ }^{a}$ See footnote a in Table II. ${ }^{b}$ See footnote b in Table I. ${ }^{c}$ See footnote b in Table II. ${ }^{d} p<0.01$. ${ }^{e}$ See footnote g in Table III. ${ }^{f}$ See footnote h in Table III.

Table VI. N-[4-[4-(Diphenylmethyl)-1-piperazinyl]butyl]-5-(3-pyridyl)-2,4-pentadienamides

compd	R	n	salt	procedure ${ }^{\text {a }}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	formula ${ }^{\text {b }}$	recrystn solvent ${ }^{c}$	$\begin{gathered} \text { yield, } \\ \% \end{gathered}$	rat PCA test: \% inhibition $20 \mathrm{mg} / \mathrm{kg}$ po
1a									$62.3{ }^{\text {d }}$
20	H	3	fumarate	L	218-220	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	C, G	37	$40.4{ }^{\text {e }}$
21	H	4		L	178-180	$\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}$	G	42	$66.4{ }^{\text {d }}$
22	$6-\mathrm{Me}$	3		L	192-194	$\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}$	G	49	35.8
23	$6-\mathrm{Me}$	4		L	163-165	$\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}$	G	56	$68.8{ }^{\text {d }}$
24	4-CH2OH, $5-\mathrm{OH}, 6-\mathrm{Me}$	3		M	153-155	$\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{3}$	G	33	9.8
25	$4-\mathrm{CH}_{2} \mathrm{OH}, 5-\mathrm{OH}, 6-\mathrm{Me}$	4		M	216-217	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{3}$	C	40	$16.4{ }_{4}{ }^{\text {d }}$

${ }^{a}$ See footnote a in Table II. ${ }^{b}$ See footnote b in Table I. ${ }^{\text {c }}$ See footnote b in Table II. ${ }^{d} p<0.01 .{ }^{e} p<0.05$.
Table VII. N-[4-(4-Substituted-1-piperidinyl)butyl]-3-(3-pyridyl)acrylamides

compd	R	Z	salt	procedure ${ }^{\text {a }}$	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	formula ${ }^{\text {b }}$	recrystn solvent ${ }^{\text {c }}$	$\underset{\%}{\text { yield, }}$	rat PCA test: \% inhibition $20 \mathrm{mg} / \mathrm{kg}$ po
1a	H	NCHPh_{2}							$62.3{ }^{\text {d }}$
26a	H	$\mathrm{CHOCHPh}_{2}$	2 oxalate	K	100-103	$\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	A	58	42.2
26b	H	$\mathrm{CHC}(\mathrm{OH}) \mathrm{Ph}_{2}$	1.5 tartrate	I	109-113	$\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1.5 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	A	19	$35.1{ }^{\text {e }}$
26c	H	$\mathrm{C}=\mathrm{CPh}_{2}$		I	155-157	$\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}$	G	52	$85.9{ }^{\text {d }}$
26d	Me	$\mathrm{C}=\mathrm{CPh}_{2}$		I	129-132	$\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}^{\prime}$	G	44	$99.5{ }^{\text {d }}$
oxatomide									$42.2^{\text {d }}$

${ }^{a}$ See footnote a in Table II. ${ }^{b}$ See footnote b in Table I. ${ }^{\text {c S See footnote } b \text { in Table II. }{ }^{d} p<0.01 .{ }^{e} p<0.05 .{ }^{1} \text { C: calcd, 79.96; found, 79.38. }}$
piperazinyl]alkyl]cinnamamides, a higher activity was observed for compounds 21, 23, and 25 with a fourmethylene chain ($n=4$) in comparison with compounds 20,22 , and 24 with a three-methylene chain $(n=3)$, respectively. Regardless of introduction of the methyl group at the 6 -position of the pyridine ring, compounds 21 and 23 were equal or somewhat superior to 1a in activity.

The effect of replacement of the 4-(diphenylmethyl)piperazine group by piperidines substituted with a diphenylmethyl or diphenylmethylene group at the 4-position was examined (Table VII). Compounds 26 c and 26 d having the diphenylmethylene group showed a marked increase in activity over the corresponding la and 17 p , respectively. Compounds 26 and 26 b bearing (di-

Table VIII. Inhibitory Activity against 5-Lipoxygenase

compd	$5-$ lipoxygenase a $\%$ inhibition
$\mathbf{1 6 e}$	$25.1^{\text {b }}$
$\mathbf{1 7 b}$	80.4^{c}
$17 \mathbf{p}$	45.7^{c}
17 x	72.7^{b}
$\mathbf{1 9 b}$	43.5^{c}
$\mathbf{2 0}$	60.3^{c}
$\mathbf{2 3}$	73.8^{c}
$\mathbf{2 6 d}$	51.7^{c}
la	2.3
caffeic acid	$22.7^{c, d}$

[^1]Table IX. Antiallergic Activities of Compound 17p (AL-3264) and Reference Compounds

compd	PCA test rat: $\mathrm{ED}_{50}, \mathrm{mg} / \mathrm{kg} \mathrm{po}$	hist release ${ }^{a}$ human basophil: $\mathrm{IC}_{50}, \mu \mathrm{M}^{e}$	5-lipoxygenase ${ }^{b}$ GP ${ }^{d}$ leukocyte: $\mathrm{IC}_{50}, \mu \mathrm{M}^{e}$	anti-hist ${ }^{c}$ GP trachea: $\mathrm{IC}_{50}, \mu \mathrm{M}^{e}$
17p	3.3	34	4.86	0.12
ketotifen	16.3	>100 (19.3\%)	>100	0.0016
oxatomide	18.2	>10 (8.2\%)	15.2	0.056
caffeic acid	NT ${ }^{\prime}$	NT	16.7	NT

${ }^{a}$ Inhibitory activity against histamine release. ${ }^{b}$ Inhibitory activity against 5-lipoxygenase. ${ }^{c}$ Anti-histamine activity. ${ }^{d}$ Guinea pig. ${ }^{e} \mathrm{ED}_{50}$ and IC_{50} values were calculated from the regression lines and were significant at $p<0.05$. ${ }^{f} \mathrm{NT}=$ not tested.
phenylmethyl)oxy and hydroxydiphenylmethyl groups, respectively, had reduced activity.

The compounds possessing potent anti-PCA activity were then tested for their in vitro 5-lipoxygenase inhibitory activity. As shown in Table VIII, compounds 17p, 19b, and 26d were more active than 1a in both anti-PCA and 5 -lipoxygenase inhibitory activities. Compound 17b, bearing the methylamino group at the 2-position of the pyridine ring, and 17 x showed potent inhibitory activity against 5-lipoxygenase but they were weaker inhibitors of the rat PCA reaction. Compound 16e, however, was equipotent to 17 p and 19 b in the rat PCA test although it was a weaker inhibitor of 5 -lipoxygenase than 17 p and 19b. The replacement of the acryloyl moiety by the $2,4-$ pentadienyl moiety (20 and 23) caused a remarkable increase in inhibitory activity against 5 -lipoxygenase. Compound 23, which had potent inhibitory activities against 5-lipoxygenase and the PCA reaction, showed no antihistamine activity in vitro at a concentration of $1 \mu \mathrm{M}$. Compound 26d possessed the greatest inhibitory activity against the PCA reaction and potent inhibitory activity against 5-lipoxygenase. However, it showed an undesirable effect (ptosis) in gross behavior at a dose of $100 \mathrm{mg} / \mathrm{kg}$ po in mice. Therefore, compound 17 p (AL-3264), which had potent inhibitory activities against 5 -lipoxygenase and the rat PCA reaction, was selected as worthy of further evaluation.
Compound 17 p was further tested for inhibitory activity against mediator release from human basophils and in vitro antihistamine activity. In addition, the inhibitory activity of 17 p against 5 -lipoxygenase was tested by various experimental conditions; the conversion rate of arachidonic acid to 5 -hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) in the absence of inhibitors was lowered to $20-30 \%$ from $40-50 \%$. Table IX gives the results from these tests for 17 p as compared with other antiallergic drugs. Compound 17 p was five times as potent as ketotifen ${ }^{10}$ and oxatomide ${ }^{11}$ in inhibitory activity against the rat PCA reaction by oral administration. Unlike ketotifen, 17 p had in vitro 5 -lipoxygenase inhibitory activity, which was three times as potent as that of oxatomide; its in vitro antihistamine activity was comparable to that of oxatomide. In addition, 17 p had a potent inhibitory activity against histamine release from healthy human basophils induced by antihuman IgE antibody.

As a result of the present study, compound 17 p (AL3264) was found to possess a better balance of antiallergic properties (inhibition of the chemical mediator release and of 5-lipoxygenase and antagonistic action of histamine) compared with ketotifen and oxatomide. This compound, therefore, seems more promising as an antiallergic candidate than la reported previously. ${ }^{1}$

Experimental Section

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra

[^2]were taken at 60 MHz with a Varian EM- 360 spectrometer, at 80 MHz with a Varian FT-80A spectrometer, or at 300 MHz with a Varian XL- 300 spectrometer. Chemical shifts are expressed in $\delta(\mathrm{ppm})$ values with tetramethylsilane as an internal standard. Electron impact mass spectra (EIMS) were recorded on a JEOL JMS D-300 or a Hitachi RMU-6L spectrometer. Elemental analyses are given only by symbols of the elements; analytical results were within $\pm 0.4 \%$ of theoretical values. Organic extracts were dried over anhydrous MgSO_{4}.
The following known intermediates were prepared according to the cited literature: 1-(p-fluorobenzhydryl)-, ${ }^{12} 1$-(p-chloro-benzhydryl)-, ${ }^{13} 1$-(m-methylbenzhydryl)-, ${ }^{14}$ and 1 -(p, p^{\prime}-dichlorobenzhydryl) piperazines, ${ }^{14}$ (diphenylmethoxy)-, ${ }^{16} 4$-(hydroxy-diphenylmethyl)-, ${ }^{16}$ and 4 -(diphenylmethylene)piperidines; ${ }^{17}$ ethyl 2-methyl-, ${ }^{18}$ ethyl 5 -fluoro-, ${ }^{19}$ ethyl 5 -chloro-, ${ }^{19}$ ethyl 5-bromo-, ${ }^{20}$ methyl 5-methoxy-, ${ }^{21}$ ethyl 6-methyl-, ${ }^{22}$ methyl 6-phenyl-, ${ }^{23}$ and ethyl 2,6 -dimethylnicotinates. ${ }^{24}$

1-(p-Methoxybenzhydryl)- (2c), 1-(p-Methylbenzhydryl)(2e), 1-(m, p-Dimethylbenzhydryl)- (2f), and 1-(p, p^{\prime}-Dimethylbenzhydryl)piperazines (2h). These compounds were prepared according to the method described in the literature. ${ }^{13}$

1-(4-Aminobutyl)-4-(diphenylmethyl)piperazines 3a-h (Table I), 1-(4-Aminobutyl)-4-(diphenylmethoxy)piperidine (5a), and 1-(4-Aminobutyl)-4-(diphenylmethylene)piperidine (5c). These compounds were prepared in a manner similar to that described previously. ${ }^{1}$ The crude $5 \mathrm{5a}$ and 5 c were prepared from the corresponding piperidines $4 \mathbf{a}^{15}$ and $4 c ;{ }^{17}$ the overall yields were 92% and 74%, respectively.

1-(4-A minobutyl)-4-(hydroxydiphenylmethyl)piperidine (5b). A mixture of 4-(hydroxydiphenylmethyl)piperidine (4b) ${ }^{16}$ $(8.0 \mathrm{~g}, 0.030 \mathrm{~mol})$, 4 -bromobutyronitrile ($4.4 \mathrm{~g}, 0.030 \mathrm{~mol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(6.2 \mathrm{~g}, 0.045 \mathrm{~mol}), \mathrm{NaI}(6.2 \mathrm{~g}, 0.041 \mathrm{~mol})$, and methyl ethyl ketone (240 mL) was heated at reflux temperature for 5 h with stirring. After the mixture was cooled, the insoluble materials were removed by filtration and washed with CHCl_{3}. The filtrate and the washings were combined and concentrated to dryness in vacuo. To the residue was added 200 mL of CHCl_{3}. The CHCl_{3} layer was washed with water, dried, and concentrated in vacuo. The residue was chromatographed on silica gel with CHCl_{3} as eluent to give 9.5 g (95%) of 1-(3-cyanopropyl)-4-(hydroxydiphenylmethyl)piperidine (6 b). Compound $6 \mathrm{~b}(9.5 \mathrm{~g}, 0.028 \mathrm{~mol}$) was hydrogenated in 200 mL of $\mathrm{CH}_{3} \mathrm{OH}$ containing 60 mL of 28%

[^3]ammonium hydroxide and 1.0 g of Raney nickel at room temperature. The mixture was filtered and the filtrate was concentrated to dryness in vacuo. The residue was crystallized from a mixture of toluene $(100 \mathrm{~mL})$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}(30 \mathrm{~mL})$ to give $6.2 \mathrm{~g}(65 \%)$ of 5 b : EIMS, $m / z 338\left(\mathrm{M}^{+}\right)$.

The crude $\mathbf{3 a - h}$ and $5 \mathbf{a}-\mathbf{c}$, without further purification, were used for the preparation of the corresponding 3-(3-pyridyl)acrylamides $16 a-i$ and $26 a-d$.

Ethyl 6-Propylnicotinate (9q). A mixture of 3-cyano-6-propyl-2-pyridone ${ }^{25}(13.8 \mathrm{~g}, 0.085 \mathrm{~mol})$ and phosphorus pentachloride ($17.7 \mathrm{~g}, 0.085 \mathrm{~mol}$) was heated at reflux temperature for 1 h with stirring. The mixture was then poured into 500 mL of ice water. The solution was adjusted to pH 7 with NaHCO_{3} and extracted with two $150-\mathrm{mL}$ portions of CHCl_{3}. The combined extracts were dried, and the solvent was removed by distillation in vacuo. The residue was chromatographed on silica gel and eluted with toluene to give 13.7 (89%) of 2-chloro-3-cyano-6propylpyridine.

2-Chloro-3-cyano-6-propylpyridine ($13.7 \mathrm{~g}, 0.076 \mathrm{~mol}$) was hydrogenated in 150 mL of $\mathrm{CH}_{3} \mathrm{OH}$ containing $7.7 \mathrm{~g}(0.076 \mathrm{~mol})$ of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$ and 1.2 g of $5 \% \mathrm{Pd} / \mathrm{C}$ until an equivalent volume of hydrogen was absorbed. The mixture was filtered and the filtrate was concentrated to dryness in vacuo. To the residue was added 50 mL of $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$. The mixture was extracted with two $150-\mathrm{mL}$ portions of CHCl_{3}. The combined extracts were dried and concentrated to dryness in vacuo to give $9.3 \mathrm{~g}(84 \%)$ of crude 5-cyano-2-propylpyridine, which was then combined with 50% $\mathrm{H}_{2} \mathrm{SO}_{4}(80 \mathrm{~mL})$. The stirred mixture was heated at reflux temperature overnight. After being cooled, the mixture was adjusted to $\mathrm{pH} 3-3.5$ with NaHCO_{3} and concentrated in vacuo. To the residue was added 100 mL of $\mathrm{CH}_{3} \mathrm{OH}$, and the insoluble materials were removed by filtration and the filtrate was concentrated to dryness in vacuo. To the residue were added 90 mL of absolute $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and 6.8 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The mixture was heated at reflux temperature for 20 h and then concentrated in vacuo. The residue was neutralized with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$. The mixture was extracted with three $100-\mathrm{mL}$ portions of CHCl_{3}. The extracts was dried and concentrated in vacuo to give 10.5 g of an oil, which was chromatographed on silica gel and eluted with CHCl_{3} to give $9.6 \mathrm{~g}(78 \%)$ of 9 q : EIMS, $m / z 193\left(\mathrm{M}^{+}\right)$.

Ethyl 6-Isopropylnicotinate (9r) and Ethyl 6-Butylnicotinate (9 s). 3-Cyano-6-isopropyl-2-pyridone and 6-butyl-3-cyano-2-pyridone were prepared from methyl isopropyl ketone and methyl butyl ketone, respectively, in a manner similar to that described in the literature. ${ }^{25}$ The overall yields of the 3-cyano2 -pyridone derivatives were 26% and 14%, respectively. Compounds 9 r and 9 s were prepared from the 3-cyano-2-pyridone derivatives in a manner similar to that described above. The overall yields of $9 \mathbf{r}$ and 9 s were 24% and 48%, respectively.

Ethyl 5,6-Dimethylnicotinate (9v). The mixture of 3 -cyano-5,6-dimethyl-2-pyridone and 3-cyano-6-ethyl-2-pyridone were prepared from methyl ethyl ketone in a manner similar to that described in the literature; ${ }^{25}$ the NMR spectrum proved that these compounds were in the ratio $1: 1$. The overall yield was 27%.

The mixture ($19.7 \mathrm{~g}, 0.13 \mathrm{~mol}$) of 3-cyano-5,6-dimethyl-2pyridone and 3-cyano-6-ethyl-2-pyridone was added slowly to phenylphosphoric dichloride ($59.7 \mathrm{~g}, 0.30 \mathrm{~mol}$). The reaction mixture was heated at $180^{\circ} \mathrm{C}$ for 2 h with stirring. The resulting solution was then poured into 340 mL of ice water. After being stirred for 2 h , the resulting suspension was extracted with two $150-\mathrm{mL}$ potions of CHCl_{3}. The combined extracts were dried, and the solvent was removed by distillation in vacuo. The residue was chromatographed on silica gel and eluted with toluene to give an oily product. To the oily product was added 20 mL of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}-n$-hexane ($1: 1$), and the resultant solid was collected and washed with $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ to give $4.9 \mathrm{~g}(22 \%)$ of 2-chloro-3-cyano-5,6-dimethylpyridine: $\operatorname{mp} 92-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (60 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.68(1 \mathrm{H}, \mathrm{s}, \mathrm{C}-4$ H).

Compound 9 v was prepared from 2-chloro-3-cyano-5,6-dimethylpyridine in a manner similar to that described above. The overall yield of 9 v was 45%.
(25) Mariella, R. P.; Stansfield, R. J. Am. Chem. Soc. 1951, 73, 1368.

3-(3-Pyridyl)acrylic Acids $8 \mathrm{a}-\mathrm{g}, 8 \mathrm{i}-\mathrm{w}$, and $15 \mathrm{a}-\mathrm{f}$ and 5-(3-Pyridyl)-2,4-pentadienoic Acids 13a-c (Table II). Procedure A. 3-(6-Methoxy-3-pyridyl) acrylic Acid (8j). To a stirred solution of 2-chloro-5-nitropyridine ($10 \mathrm{~g}, 0.063 \mathrm{~mol}$), absolute $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~g}, 0.063 \mathrm{~mol})$, and anhydrous tetrahydrofuran (THF) (40 mL) was added 2.8 g of NaH (about 60%, in oil) under cooling in an ice-water bath. The mixture was stirred at room temperature for 1 h , and 30 mL of water was added. The mixture was extracted with three $40-\mathrm{mL}$ portions of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$, and the combined extracts were dried. The solvent was removed by distillation in vacuo to give $8.0 \mathrm{~g}(82 \%)$ of crude 2 -methoxy-5nitropyridine.

The crude 2-methoxy-5-nitropyridine ($8.0 \mathrm{~g}, 0.052 \mathrm{~mol}$) was hydrogenated in 80 mL of $\mathrm{CH}_{3} \mathrm{OH}$ containing 1.7 g of $5 \% \mathrm{Pd} / \mathrm{C}$ at room temperature under atmospheric pressure. After removal of the catalyst by filtration, 100 mL of acetone was added to the filtrate. To the stirred and ice-cooled solution was added 18 mL of concentrated HCl . Then a solution of $\mathrm{NaNO}_{2}(3.3 \mathrm{~g}, 0.048 \mathrm{~mol})$ in water (7 mL) was added dropwise below $5^{\circ} \mathrm{C}$. To the mixture was added slowly $22.4 \mathrm{~g}(0.26 \mathrm{~mol})$ of methyl acrylate with stirring at $5^{\circ} \mathrm{C}$. The temperature was raised to $35^{\circ} \mathrm{C}$, and 0.7 g of $\mathrm{Cu}_{2} \mathrm{O}$ was added to the mixture in small portions with vigorous stirring. After the nitrogen gas evolution had ceased, the reaction mixture was concentrated in vacuo, diluted with water, neutralized with 28% ammonium hydroxide, and extracted with three $100-\mathrm{mL}$ portions of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$. The combined extracts were dried and concentrated in vacuo. The residue was chromatographed on silica gel and eluted with CHCl_{3} to give $4.5 \mathrm{~g}(38 \%)$ of methyl 2-chloro-3-(6-methoxy-3-pyridyl) propionate.

A mixture of methyl 2-chloro-3-(6-methoxy-3-pyridyl)propionate ($4.5 \mathrm{~g}, 0.020 \mathrm{~mol}$), $4 \mathrm{~N} \mathrm{KOH}\left(46 \mathrm{~mL}\right.$), and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (46 mL) was heated at reflux temperature for 2 h . The mixture was concentrated in vacuo. To the residue was added 30 mL of water, and the mixture was adjusted to pH 4 with $10 \% \mathrm{HCl}$. The resulting precipitate was collected to give $2.9 \mathrm{~g}(83 \%)$ of $8 \mathbf{j}$: EIMS, $m / z 179\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 3.89(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 6.54(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}), 7.53(1 \mathrm{H}, \mathrm{d}, J$ $=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}-$.

Procedure B. 5-(3-Pyridyl)-2,4-pentadienoic Acid (13a). To a solution of triethyl phosphonocrotonate ($10 \mathrm{~g}, 0.040 \mathrm{~mol}$) in DMF (100 mL) were added slowly 1.6 g of NaH (about 60%, in oil) and then $4.3 \mathrm{~g}(0.040 \mathrm{~mol})$ of 3 -pyridinecarbaldehyde. The resulting mixture was stirred at room temperature for 40 min and then at $80^{\circ} \mathrm{C}$ for 16 h and concentrated in vacuo. To the residue was added 50 mL of water, and the aqueous mixture was extracted with three $80-\mathrm{mL}$ portions of CHCl_{3}. The combined extracts were dried and concentrated in vacuo. The residue was chromatographed on silica gel and eluted with CHCl_{3} to give 5.7 g (70%) of ethyl 5-(3-pyridyl)-2,4-pentadienoate.

A mixture of ethyl 5-(3-pyridyl)-2,4-pentadienoate ($5.7 \mathrm{~g}, 0.028$ $\mathrm{mol}), 2 \mathrm{~N} \mathrm{KOH}(20 \mathrm{~mL})$, and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(20 \mathrm{~mL})$ was heated at reflux temperature with stirring for 1 h . The $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was removed by distillation in vacuo. The aqueous solution was adjusted to pH 4 with $10 \% \mathrm{HCl}$. The resulting precipitate was collected and washed with cold water to give $2.8 \mathrm{~g}(57 \%)$ of 13a: EIMS, $m / z 175\left(\mathrm{M}^{+}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 6.08(1 \mathrm{H}, \mathrm{d}$, $J=14.7 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCO}), 7.09(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCO}-), 7.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.4,10.7 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCO}-), 7.38(1 \mathrm{H}, \mathrm{dd}, J=14.7,10.7 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCO}$-).

Procedure C. 3-(2-Methyl-3-pyridyl)acrylic Acid (8c). To a stirred suspension of lithium aluminum hydride $(3.1 \mathrm{~g}, 0.082$ mol) in dry $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}(140 \mathrm{~mL})$ was added dropwise a solution of ethyl 2-methylnicotinate ${ }^{18}(9.0 \mathrm{~g}, 0.055 \mathrm{~mol})$ in dry $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ (70 mL) at room temperature, and the mixture was heated at reflux temperature for 1.5 h . After the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, the remaining lithium aluminum hydride was allowed to decompose by the cautious addition of 15 mL of water. The $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ layer was decanted, and the residual solid was extracted with three $30-\mathrm{mL}$ portions of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$. The combined extracts were dried and concentrated in vacuo to give $6.4 \mathrm{~g}(96 \%)$ of crude 2-methyl-3-pyridinemethanol (11c).

Chromium trioxide ($7.4 \mathrm{~g}, 0.074 \mathrm{~mol}$) was slowly added to 110 mL of pyridine at $20^{\circ} \mathrm{C}$, and a solution of 6.4 g of the crude 11 c in 45 mL of pyridine was added in one portion to the complex. The temperature was raised to the reflux temperature over a
period of 2 h , and the mixture was heated at reflux temperature for 1.5 h . To the cooled mixture was added 220 mL of water, and the mixture was extracted with five $20-\mathrm{mL}$ portions of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$. The combined extracts were dried and concentrated in vacuo to give 2.3 g (37%) of crude 2-methyl-3-pyridinecarbaldehyde (12c).

A mixture of the crude $12 \mathrm{c}(2.3 \mathrm{~g})$, malonic acid ($3.0 \mathrm{~g}, 0.029$ mol), piperidine (0.3 mL), and pyridine (14 mL) was stirred at $100^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was concentrated in vacuo, and 2.5 mL of water was added to the residue. The resulting precipitate was collected to give $2.2 \mathrm{~g}(71 \%)$ of 8 c : EIMS, m / z $163\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 2.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $6.51(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}), 7.80(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CHCO}-$.

Procedure D. 3-(5-Chloro-3-pyridyl)acrylic Acid (8e). A mixture of ethyl 5 -chloronicotinate ${ }^{19}(9.0 \mathrm{~g}, 0.049 \mathrm{~mol})$ and hydrazine monohydrate ($7.3 \mathrm{~g}, 0.15 \mathrm{~mol}$) was stirred at $110^{\circ} \mathrm{C}$ for 1 h and then cooled. To the mixture was added 30 mL of cold water. The resulting precipitate was collected and washed with cold water to give 7.9 g (95%) of crude 5 -chloro-3-pyridinecarbohydrazonic acid.

To a stirred mixture of 7.9 g of the crude hydrazonic acid in 50 mL of pyridine was added slowly $9.7 \mathrm{~g}(0.051 \mathrm{~mol})$ of p toluenesulfonyl chloride. After the mixture became a clear solution, the pyridine was removed by distillation in vacuo and 30 mL of water was added to the residue. The resulting precipitate was collected and washed with water to give $14.3 \mathrm{~g}(95 \%)$ of the crude p-toluenesulfonyl derivative $10 \mathbf{e}$.

The crude $10 \mathrm{e}(14.3 \mathrm{~g})$ was added to 70 mL of ethylene glycol at $120^{\circ} \mathrm{C}$, and $14 \mathrm{~g}(0.13 \mathrm{~mol})$ of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to the stirred mixture. The reaction mixture was heated at 160 ${ }^{\circ} \mathrm{C}$ for 10 min . The mixture was cooled, diluted with water, and extracted with three $100-\mathrm{mL}$ portions of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$. The combined extracts were dried and concentrated in vacuo to give $3.5 \mathrm{~g}(56 \%)$ of crude 5 -chloro-3-pyridinecarbaldehyde (12e).

The crude 8 e was derived from the crude 12 e in 44% yield in a manner similar to that described in procedure C: EIMS, m / z $183\left(\mathrm{M}^{+}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 6.79(1 \mathrm{H}, \mathrm{d}, J=$ $16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}-), 7.65(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}-)$.

Procedure E. 3-(6-Methyl-3-pyridyl)acrylic Acid (8p). 6-Methyl-3-pyridinemethanol (11p) was prepared from ethyl 6 -methylnicotinate in 89% yield by the use of sodium bis(2methoxyethoxy)aluminum hydride instead of lithium aluminum hydride as in procedure C.

A suspension of lead tetraacetate ($110.8 \mathrm{~g}, 0.25 \mathrm{~mol}$) in dry toluene (470 mL) was stirred at $80^{\circ} \mathrm{C}$ for 20 min . To the suspension was added dropwise over a period of 25 min a solution of $11 \mathrm{p}(30 \mathrm{~g}, 0.24 \mathrm{~mol})$ in dry toluene $(100 \mathrm{~mL})$. The reaction mixture was heated at reflux temperature with stirring for 2.5 h. After the mixture was cooled, the insoluble materials were removed by filtration and washed with toluene. The filtrate and the washings were combined, washed successively with 10% $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and water, dried, and concentrated in vacuo to give 16.9 $\mathrm{g}(57 \%)$ of crude 6 -methyl-3-pyridinecarbaldehyde (12 p).

The crude 8 p was derived from the crude 12 p in 77% yield by procedure C: EIMS, $m / z 163\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.68(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CHCO}-), 7.60(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}$).

Procedure F. 3-(6-Isopropyl-3-pyridyl)acrylic Acid (8r). 6-Isopropyl-3-pyridinemethanol (11r) was prepared from ethyl 6 -isopropylnicotinate in 91% yield by procedure C.

To a solution of $11 \mathrm{r}(5.1 \mathrm{~g}, 0.034 \mathrm{~mol})$ in 70 mL of CHCl_{3} was added active manganese dioxide (35 g), and the mixture was heated at reflux temperature with stirring for 1 h . The insoluble materials were removed by filtration and washed with CHCl_{3}. The filtrate and the washings were concentrated in vacuo to give 3.7 g (74%) of crude 6-isopropyl-3-pyridinecarbaldehyde ($\mathbf{1 2 r}$).

The crude $8 \mathbf{r}$ was derived from the crude 12 r in 85% yield by procedure C: EIMS, m/z $177\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR (60 MHz , $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 1.25\left(6 \mathrm{H}, \mathrm{d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.60(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, $-\mathrm{CH}=\mathrm{CHCO}$), 7.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}$-).

Procedure G. 2-Phenyl-3-(3-pyridyl)acrylic Acid (15e). To a stirred mixture of 3-pyridinecarbaldehyde ($4.3 \mathrm{~g}, 0.040 \mathrm{~mol}$), phenylacetic acid ($5.4 \mathrm{~g}, 0.039 \mathrm{~mol}$), and acetic anhydride (11.4 $\mathrm{mL})$ was added $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}(5.6 \mathrm{~g}, 0.039 \mathrm{~mol})$. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 4 h . After being cooled, the mixture was alkalized with $10 \% \mathrm{NaHCO}_{3}$. The aqueous mixture was warmed
to $60^{\circ} \mathrm{C}$ and filtered. The filtrate was adjusted to pH 4.5 with $10 \% \mathrm{HCl}$, and the resulting precipitate was collected and recrystallized from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to give 2.7 g (31%) of 15 e .

The crude $8 \mathbf{a}-\mathrm{g}, 8 \mathrm{i}-\mathbf{w}, 13 \mathrm{a}-\mathrm{c}, 15 \mathrm{a}-\mathrm{d}$, and 15 f , without further purification, were used for the preparation of the corresponding amides $17 a-x, 19 a-d, 19 f, 20-25$, and $26 d$. These acids recrystallized from the solvent given in Table II were subjected to elemental analyses.

3-(3-Pyridyl)propionic Acid (14a). A mixture of 3-(3pyridyl)acrylic acid ${ }^{26}(5.0 \mathrm{~g}, 0.034 \mathrm{~mol}), 10 \% \mathrm{Pd} / \mathrm{C}(0.4 \mathrm{~g}), \mathrm{CH}_{3} \mathrm{OH}$ $(150 \mathrm{~mL})$, and DMF (50 mL) was hydrogenated at room temperature under atmospheric pressure until an equivalent volume of hydrogen was absorbed. After removal of the catalyst by filtration, the filtrate was concentrated to dryness in vacuo and recrystallized from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to give $4.5 \mathrm{~g}(88 \%)$ of 14 a : mp $149-151^{\circ} \mathrm{C}$; EIMS, $m / z 151\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-(6-Methyl-3-pyridyl)propionic Acid (14b). This compound was prepared from 8 p in 75% yield in a manner similar to that described above: $\mathrm{mp} 114^{\circ} \mathrm{C}$ (from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-n$-hexane); EIMS, $m / z 165\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-(3-Pyridyl)acrylamides $16,17,19$, and 26, 3-(3Pyridyl)propionamides 18a and 18b, and 5-(3-Pyridyl)-2,4pentadienamides 20-25 (Tables III-VII). Procedure H. \boldsymbol{N}-[4-[4-(Diphenylmethyl)-1-piperazinyl]butyl]-3-(5-fluoro-3-pyridyl)acrylamide (17d). Compound 17 d was prepared by the use of ethyl chlorocarbonate in a manner similar to that described previously: ${ }^{1}$ EIMS, $m / z 472\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(80 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 4.26\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 6.73(1 \mathrm{H}, \mathrm{d}, J$ $=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}-$).

Procedure I. \boldsymbol{N}-[4-[4-(Diphenylmethyl)-1-piperazinyl]-butyl]-2-ethyl-3-(3-pyridyl)acrylamide Sesquifumarate (19c). A mixture of $15 \mathrm{c}(0.80 \mathrm{~g}, 4.5 \mathrm{mmol})$, 1 -(4-aminobutyl)-4-(diphenylmethyl) piperazine ${ }^{1}(2.2 \mathrm{~g})$, 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide hydrochloride ($0.87 \mathrm{~g}, 4.5 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) was stirred at room temperature overnight. The reaction mixture was washed successively with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ and water, dried, and concentrated to dryness in vacuo. The residue was chromatographed on silica gel and eluted with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}$ (30:1) to give a brown oil, which was dissolved in 5 mL of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ containing 1.0 g of fumaric acid. To the resulting solution was added 15 mL of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$. The solid separated was collected and recrystallized from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ to give $1.4 \mathrm{~g}(47 \%)$ of 19 c : EIMS, $m / z 482\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(80 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 4.27$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}$), $1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$).

Procedure J. \boldsymbol{N}-[4-[4-(Diphenylmethyl)-1-piperazinyl]-butyl]-3-(5-hydroxy-3-pyridyl)acrylamide (17h). To a solution of the free base of $17 \mathrm{~g}(0.5 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{BBr}_{3}(1.3 \mathrm{~g}, 5.3 \mathrm{mmol})$ under cooling in an ice-water bath. The reaction mixture was stirred at room temperature overnight. To the mixture was added 10 mL of water under cooling in an ice-water bath, and the resulting mixture was adjusted to pH 7 with 1 N NaOH . The aqueous mixture was extracted with three $25-\mathrm{mL}$ portions of CHCl_{3}. The extracts were dried and concentrated to dryness in vacuo. The residue was recrystallized from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{3} \mathrm{CN}$ to give $0.1 \mathrm{~g}(20 \%)$ of 17 h : EIMS, $m / z 470\left(\mathrm{M}^{+}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(80 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 4.22\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{Ph}_{2}\right), 6.61(1$ $\mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}-$).

Procedure K. \boldsymbol{N}-[4-[4-(Diphenylmethyl)-1-piperazinyl]-butyl]-3-(6-propyl-3-pyridyl)acrylamide (17q). A mixture of 8 q ($0.71 \mathrm{~g}, 3.7 \mathrm{mmol}$), N-hydroxysuccinimide $(0.47 \mathrm{~g}, 4.1 \mathrm{mmol}$), N, N^{\prime}-dicyclohexylcarbodiimide ($1.22 \mathrm{~g}, 5.9 \mathrm{mmol}$), and dioxane $(20 \mathrm{~mL})$ was stirred at room temperature overnight. The insoluble materials were removed by filtration and washed with dioxane. The filtrate and the washings were concentrated to dryness in vacuo. The residue was dissolved in 20 mL of anhydrous THF, and 1.2 g of 1-(4-aminobutyl)-4-(diphenylmethyl)piperazine ${ }^{1}$ was added thereto. The mixture was stirred at room temperature for 5 h , and 40 mL of $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ was added. The mixture was extracted with three $50-\mathrm{mL}$ portions of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$. The combined extracts were dried and the solvent was removed by distillation in vacuo. The residue was chromatographed on silica gel and eluted with $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH}(40: 1)$ to give an oily product,
(26) Marvel, C. S.; Coleman, L. E. Jr.; Scott, G. P. J. Org. Chem. 1955, 20, 1785.
which was crystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to give $0.77 \mathrm{~g}(41 \%)$ of 17 q : EIMS, $m / z 496\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(80 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta 0.91$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.26\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 6.68(1 \mathrm{H}, \mathrm{d}, J=16$ $\mathrm{Hz},-\mathrm{CH}=\mathrm{CHCO}-$.

Procedure L. N-[4-[4-(Diphenylmethyl)-1-piperazinyl]-butyl]-3-(6-methyl-3-pyridyl)acrylamide (17p). To a stirred suspension of $8 \mathbf{p}(2.7 \mathrm{~g}, 0.017 \mathrm{~mol})$ in anhydrous THF (70 mL) was added a solution of $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}(1.7 \mathrm{~g}, 0.017 \mathrm{~mol})$ in anhydrous THF (5 mL) at room temperature. The resulting mixture was cooled to $-5^{\circ} \mathrm{C}$, and a solution of pivaloyl chloride ($2.0 \mathrm{~g}, 0.017$ mol) in anhydrous THF (5 mL) was added slowly. After the mixture was stirred at the same temperature for 30 min and cooled to $-10^{\circ} \mathrm{C}$, a solution of 6.4 g of 1 -(4-aminobutyl)-4-(diphenylmethyl) piperazine ${ }^{1}$ in anhydrous THF (5 mL) was added slowly. The reaction mixture was stirred for 30 min at -10 to $-5^{\circ} \mathrm{C}$ and then at room temperature overnight. The insoluble materials were removed by filtration and washed with $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$. The filtrate and the washings were concentrated in vacuo. To the residue was added 50 mL of $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$, and the reaction mixture was extracted with 150 mL of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$. The extract was washed with water and dried. The solvent was removed by distillation in vacuo. The residue was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to give 5.6 g (70%) of 17 p : EIMS, $m / z 468\left(\mathrm{M}^{+}\right):{ }^{1} \mathrm{H}$ NMR ($80 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.19\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 6.39(1 \mathrm{H}, \mathrm{d}, J=16$ $\mathrm{Hz},-\mathrm{CH}=\mathrm{CHCO}-$.

Procedure M. N-[4-[4-(Diphenylmethyl)-1-piperazinyl]butyl]-3-[5-hydroxy-4-(hydroxymethyl)-6-methyl-3-pyridyl]acrylamide (17x). A mixture of the free base of $17 \mathrm{w}(1.7 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $0.1 \mathrm{~N} \mathrm{HCl}(600 \mathrm{~mL})$ was heated at $85^{\circ} \mathrm{C}$ for 40 min . The mixture was alkalized with $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ and extracted with three $100-\mathrm{mL}$ portions of CHCl_{3}. The extracts were dried and concentrated to dryness in vacuo. The residue was recrystallized from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{3} \mathrm{CN}$ to give 0.53 g (34%) of $17 \mathrm{x}:$ EIMS, $m / z 514\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(80 \mathrm{MHz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}-d_{6}\right) \delta$ $4.25\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHPh}_{2}\right), 4.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 6.51(1 \mathrm{H}, \mathrm{d}, J=16$ $\mathrm{Hz},-\mathrm{CH}=\mathrm{CHCO}-), 7.64(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCO}-)$.

Reference Compounds. Oxatomide ${ }^{27}$ and ketotifen ${ }^{28}$ were prepared according to known procedures. Caffeic acid is commercially available (Nakalai Tesque, Japan).
Rat Passive Cutaneous Anaphylaxis (PCA) Assay. ${ }^{29}$ Male Std:Wistar rats $(140-200 \mathrm{~g})$ were injected with 0.1 mL of a dilute solution of mouse antiserum to egg albumin in two sites of the shaved ventral skin. Forty-eight hours later each rat was challenged by an intravenous injection of 2 mg of the antigen together with 1 mL of a 0.5% Evan's blue saline solution. The rats were sacrificed 30 min after the challenge. The dimension (shortest \times longest diameters) of the blueing lesions was measured on the undersurface of the skin. Test compounds were dissolved or suspended in a 0.5% gum tragacanth aqueous solution and administered orally to the rats 1 h before antigen challenge. Each group of three or four rats was used for each test compounds. The antiallergic activity of the compounds was expressed as percent inhibition of the dimension compared with the control group. Mouse anti-egg albumin antiserum was produced by the method of Levine and Vaz. ${ }^{30}$

5-Lipoxygenase Assay. The test was carried out according to the method of Ochi et al. ${ }^{31}$ and Miyamoto and Obata ${ }^{32}$ with minor modifications. In brief, the cytosol fraction of peritoneal exudate cells of guinea pigs was used as 5 -lipoxygenase. The reaction mixture was incubated for 5 min at $30^{\circ} \mathrm{C}$ after addition of ($1-^{14} \mathrm{C}$)arachidonic acid ($0.02 \mu \mathrm{Ci}$). 5-Lipoxygenase activity was expressed as the conversion rate of arachidonic acid to 5 -HETE
(27) Janssen Pharmaceutica N. V. U. S. Patent 4,250,176; Chem. Abstr. 1978, 88, 50920n.
(28) Waldvogel, E.; Schwarb, G.; Bastian, J. M.; Bourquin, J. P. Helv. Chim. Acta 1976, 59, 866.
(29) Nakamura, H.; Motoyoshi, K.; Ishii, K.; Kadokawa, T. Nippon Yakurigaku Zasshi 1988, 92, 29.
(30) Levine, B. B.; Vaz, N. M. Int. Archs Allergy Appl. Immun. 1970, 39, 156.
(31) Ochi, K.; Yoshimoto, T.; Yamamoto, S. J. Biol. Chem. 1983, 258, 5754.
(32) Miyamoto, T.; Obata. T. Perspectives in Prostaglandin Research; Shiokawa, Y., Katori, M., Mizushima, Y., Ed.; Excepta Medica: Amsterdam, Oxford, and Princeton, 1983; p 78.
for 5 min . Each group of three tubes was used for each test compound. The effect of test compounds was expressed as percent inhibition of the conversion rate compared with the control.

Histamine Release Assay. Basophils from nonallergic volunteers were collected by the method of Levy and Osler ${ }^{33}$ with minor modifications. The cells were washed once with a cold Tris-A buffer at pH 7.4 (25 mL Tris, $120 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}$, and 0.03% human serum albumin) containing 4 mM EDTA and twice with Tris-A buffer. After washing, the cells were resuspended at $5-10 \times 10^{6}$ leukocytes $/ \mathrm{mL}$ in Tris-ACM buffer at pH 7.6 (Tris-A buffer, 0.6 mM CaCl 2 and 1 mM MgCl). One milliliter of the cell suspension was incubated with 0.1 mL of a solution of the test compound or vehicle for 15 min at $37^{\circ} \mathrm{C}$ and then for an additional 45 min with 0.1 mL of anti-human IgE antibody. After ice-cooling, the reaction mixture were centrifuged at 1200 rpm for 8 min at $4^{\circ} \mathrm{C}$. The supernatant fluids and the cells were analyzed separately for histamine by a modified method of the spectrophotofluorometric technique of Shore et al. ${ }^{34}$ Inhibitory rate was calculated from histamine release rated without vs with test compound. IC_{50} values were determined from the best fit linear regression line of the inhibitory rates (average values of 2 experiments in each concentration).

Antihistamine Assay. Zig-zag strips of guinea pig trachea were prepared by the method of Emmerson and Mackay. ${ }^{35}$ Dose-response curves for histamine were obtained before and 60 min after the addition of test compounds. Inhibitory rate was calculated from contraction heights in $3 \times 10^{-5} \mathrm{M}$ histamine without vs with test compound. IC_{50} values were determined from the best fit linear regression line of the inhibitory rates of histamine response.

Acknowledgment. We are grateful to Dr. M. Hashimoto, the director of the laboratories, and Dr. J. Matsumoto for their encouragement throughout this work. Thanks are also due to the staff of our analytical section for elemental analyses and spectral measurements.

Registry No. 2a, 27064-89-7; 2b, 303-26-4; 2c, 54041-93-9; 2d, 68240-65-3; 2e, 68240-63-1; 2f, 118419-87-7; 2g, 27469-61-0; 2h, 68240-67-5; 3a, 118419-73-1; 3a-2fumarate, 118419-80-0; 3b, 101620-08-0; 3b-2.5fumarate, 118419-81-1; 3c, 118419-74-2; 3c2.5fumarate, 118419-82-2; 3d, 118419-75-3; 3e, 118419-76-4; 3e. 2.5fumarate, 118419-83-3; 3f, 118419-77-5; 3g, 118419-78-6; 3g. 2fumarate, 118419-84-4; 3h, 118419-79-7; 3h-2fumarate, 118419-85-5; 4a, 58258-01-8; 4b, 115-46-8; 4c, 50706-57-5; 5a, 101620-78-4; 5b, 117830-22-5; 5c, 117830-21-4; 6b, 118419-86-6; 8a, 118419-93-5; 8b, 118419-94-6; 8c, 118419-95-7; 8d, 118419-96-8; 8e, 118419-97-9; 8f, 118419-98-0; 8g, 118419-99-1; 8i, 118420-00-1; 8j, 118420-01-2; 8k, 118420-02-3; 81, 118420-03-4; 8m, 118420-04-5; 8n, 118420-05-6; 80, 118420-06-7; 8p, 117830-17-8; 8q, 118420-07-8; 8r, 118420-08-9; 8s, 118420-09-0; 8t, 118420-10-3; 8u, 118420-11-4; 8v, 118420-12-5; 8w, 118420-13-6; 9q, 118419-90-2; 9r, 118419-91-3; 9s, 118419-92-4; 9v, 77629-53-9; 10e, 118420-18-1; 11c, 56826-61-0; 11p, 34107-46-5; $11 \mathbf{r}, 107756-02-5$; 12b, 32399-08-9; 12c, 60032-57-7; 12e, 113118-82-4; 12p, 53014-84-9; 12r, 107756-03-6; 13a, 118420-15-8; 13b, 118420-16-9; 13c, 118420-17-0; 14a, 3724-19-4; 14b, 118420-23-8; 15a, 118420-19-2; 15b, 106988-33-4; 15c, 118420-20-5; 15d, 118420-21-6; 15e, 32986-89-3; 15f, 118420-22-7; 16a, 118420-24-9; 16a•3oxalate, 118420-65-8; 16b, 118420-25-0; 16b-3oxalate, 118420-66-9; 16c, 118420-26-1; 16c-2oxalate, 118420-67-0; 16d, 118420-27-2; 16d-3oxalate, 118420-68-1; 16e, 118420-28-3; 16f, $118420-29-4 ; 16 \mathrm{~g}, 118420-30-7$; 16g.2oxalate, $118420-69-2 ; 16 \mathrm{~h}$, 118437-09-5; 16i, 118420-31-8; 16i-4oxalate, 118420-70-5; 17a, 118420-32-9; 17a-3oxalate, 118420-75-0; 17b, 118420-33-0; 17b 2tartrate, $118420-76-1$; 17c, 118420-34-1; 17c•1.5tartrate, 118420-77-2; 17d, 118420-35-2; 17e, 118420-36-3; 17f, 118420-37-4; $17 \mathrm{~g}, 118420-38-5 ; 17 \mathrm{~g} \cdot 1.5$ tartrate, $118420-78-3 ; 17 \mathrm{~h}, 118420-39-6 ;$ $17 \mathrm{i}, 118420-40-9 ; 17 \mathbf{j}, 118420-41-0 ; 17 \mathrm{k}, 118420-42-1 ; 17 \mathrm{k} \cdot 3$ oxalate, 118420-79-4; 171, 118420-43-2; 17m, 118420-44-3; 17n, 118420-45-4; 17o, 118420-46-5; 17p, 118420-47-6; 17q, 118420-48-7; 17r,

[^4]118420-49-8; 17r-2tartrate, 118420-80-7; 17s, 118420-50-1; 17t, 118420-51-2; 17u, 118420-52-3; 17u $\cdot 2$ tartrate, 118420-81-8; 17v, 118420-53-4; 17v.2tartrate, 118420-82-9; 17w, 118420-54-5; 17 w -3oxalate, 118420-83-0; 17x, 118437-10-8; 18a, 107755-78-2; 18a-fumarate, 118420-84-1; 18b, 107755-79-3; 19a, 107755-62-4; 19a.fumarate, 107755-63-5; 19b, 107755-60-2; 19c, 118420-55-6; 19c•1.5fumarate, 118420-71-6; 19d, 107755-68-0; 19e, 107755-64-6; 19e-2oxalate, 107755-65-7; 19f, 107755-61-3; 20, 118420-56-7; 20-3fumarate, 118420-72-7; 21, 118420-57-8; 22, 118420-58-9; 23, 118420-59-0; 24, 118420-60-3; 25, 118420-61-4; 26a, 118420-62-5; 26a-2oxalate, 118420-73-8; 26b, 118420-63-6; 26b-1.5tartrate, 118420-74-9; 26c, 118420-64-7; 26d, 117830-04-3; (EtO) ${ }_{2} \mathrm{P}(\mathrm{O})$ $\mathrm{CHMeCO}_{2} \mathrm{Et}$, 3699-66-9; (EtO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHEtCO}_{2} \mathrm{Et}, 17145-91-4$; $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \quad 867-13-0$; $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHPrCO}_{2} \mathrm{Et}$, 35051-49-1; (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHPhCO}_{2} \mathrm{Et}, 31641-78-8$; 3-acetylpyridine, 350-03-8; 3-pyridinecarbaldehyde, 500-22-1; 4-bromobutyronitrile, 5332-06-9; 3-cyano-6-propyl-2-pyridone, 24049-25-0; 2-chloro-3-cyano-6-propylpyridine, 118419-88-8; 5-cyano-2-propylpyridine,

118419-89-9; 3-cyano-6-isopropyl-2-pyridone, 5782-69-4; 6-bu-tyl-3-cyano-2-pyridone, 118420-86-3; 3-cyano-5,6-dimethyl-2pyridone, 72716-80-4; 3-cyano-6-ethyl-2-pyridone, 4241-20-7; 2-chloro-3-cyano-5,6-dimethylpyridine, 65176-93-4; 2-chloro-5nitropyridine, 4548-45-2; 2-methoxy-5-nitropyridine, 5446-92-4; methyl acrylate, 96-33-3; methyl 2 -chloro-3-(6-methoxy-3pyridyl)propionate, 107756-04-7; triethyl phosphonocrotonate, 10236-14-3; ethyl (E, E)-5-(3-pyridyl)-2,4-pentadienoate, 118420-14-7; ethyl 2-methylnicotinate, 1721-26-2; malonic acid, 141-82-2; ethyl 5-chloronicotinate, 20825-98-3; 5-chloro-3-pyridinecarbohydrazonic acid, 117830-18-9; ethyl 6-methylnicotinate, 21684-59-3; phenylacetic acid, 103-82-2; 3-(3-pyridyl)acrylic acid, 1126-74-5; 1-(4-aminobutyl)-4-(diphenylmethyl) piperazine, 101620-10-4; (2-(4-bromobutyl)-1H-isoindole-1,3(2H)-dione, 5394-18-3; ethyl 5 -methoxynicotinate, 20826-01-1; ethyl 6-phenylnicotinate, 57443-68-2; ethyl 2,6-dimethylnicotinate, 1721-13-7; ethyl 5fluoronicotinate, 22620-29-7; ethyl 5-bromonicotinate, 20986-40-7; 4-(diphenylmethyl)-1-piperazinepropanamine, 50971-75-0.

5-(1-Piperazinyl)-1H-1,2,4-triazol-3-amines as Antihypertensive Agents ${ }^{1}$

Walter E. Meyer,* Andrew S. Tomcufcik, Peter S. Chan, and Margie Haug
American Cyanamid Company, Medical Research Division, Lederle Laboratories, Pearl River, New York 10965. Received April 18, 1988

Abstract

A series of 5-(1-piperazinyl)-1H-1,2,4-triazol-3-amines was synthesized and screened for antihypertensive and diuretic activity in spontaneously hypertensive rats (SHR). One compound, 5-[4-[(3-chlorophenyl)methyl]-1-piperazinyl]-1 H -1,2,4-triazol-3-amine (8), was selected to define the mechanism of its antihypertensive activity. Studies in SHR suggest ganglionic blocking activity. Short-lived antihypertensive activity was observed in conscious renal hypertensive dogs.

During an ongoing search for effective drugs for the management of hypertension, the piperazinyltriazolamine 5 was synthesized. When administered orally to the conscious, spontaneously hypertensive rat, compound 5 significantly lowered blood pressure without affecting urinary output. The ubiquitous presence of the piperazine nucleus in cardiovascular drugs such as prazosin, ${ }^{2}$ lidoflazine, ${ }^{3}$ and urapidil ${ }^{4}$ encouraged us to undertake, as one aspect of our investigation of this heterocyclic system, the synthesis and biological evaluation of a series of 4 - N^{\prime}-substituted piperazinyltriazolamines related to 5 , which we report in this paper.

Chemistry

The compounds listed in Table I were synthesized by the two-step route outlined in Scheme I. Dimethyl cyanocarboximidodithioate (1) reacted smoothly with 1 equiv of 2 in either ethanol or acetonitrile to give thioic acid 3 in high yield. Although 3 could be isolated as a crystalline solid, it was usual to proceed to the final step without isolation of this intermediate. The cessation of methyl mercaptan evolution indicated the completion of step 1. A slight excess of hydrazine hydrate was added and refluxing continued until evolution of the second mole of methyl mercaptan was complete. Ethanol reacted slowly with 1 to give, after reaction with hydrazine hydrate, small quantities of 5 -ethoxy- 1 H -1,2,4-triazol-3-amine, which in-

[^5]

terfered with the purification of the final product; therefore, acetonitrile was the solvent of choice.

Discussion

Blood pressure lowering and diuretic activity was assessed in spontaneously hypertensive rats (SHR). As may be seen from Table I, a number of N^{\prime}-benzyl- and N^{\prime}-al-kyl-substituted piperazines show blood pressure lowering properties. Alkyl (36, 37), phenylalkyl (5, 6, 7, 42), and phenoxyalkyl (44) derivatives, with the exception of those alkyl groups containing nitrogen (41, 43), lower blood pressure as much as 75 mmHg below control levels. Cycloalkyl derivatives 38,39 , and 40 show significant but less blood pressure lowering capabilities. Benzylic derivatives indicate varying degrees of potency depending on the substituent and substitution pattern of the phenyl ring.

Thus, while the halogenated benzyl derivatives 8,19 , and 20 lower blood pressure markedly, ortho-substituted derivatives $9,11,14,15,21,29,32$, and 47 showed diminished potency. Ring deactivating groups, such as cyano (24) and nitro (33), suppress activity, whereas the effect of ring activation is less clear. While the p-amino (27), p-dimethylamino (28), and 3-bromo-p-(dimethylamino) benzyl (31) piperazine compounds exhibit blood pressure lowering

[^0]: (3) Sohda, T.; Mizuno, K.; Imamiya, E.; Tawada, H.; Meguro, K.; Kawamatsu, Y.; Yamamoto, Y. Chem. Pharm. Bull. 1982, 30, 3601.
 (4) Fadda, A. A.; Abdelrazek, F. M.; El-Habbal, M. M. Indian J. Chem. 1986, 25B, 194.
 (5) McFadyne, J. S.; Stevens, T. S. J. Chem. Soc. 1936, 584.
 (6) Dornow, A.; Bormann, H. Ber. 1949, 82, 216.
 (7) Korytnyk, W. J. Med. Chem. 1964, 8, 112.

[^1]: ${ }^{a}$ Inhibitory activity at $10 \mu \mathrm{M} .{ }^{b} p<0.05 .{ }^{c} p<0.01$. ${ }^{d}$ Inhibitory activity at $30 \mu \mathrm{M}$.

[^2]: (10) Martin, U.; Römer, M. Arzneim.-Forsch. 1978, 28, 770.
 (11) Emanuel, K. B.; Towse, G. D. W. Drugs Today 1980, 16, 219.

[^3]: (12) Janssen Pharmaceutica, N. V. Ger. Offen. 1,929,330; Chem. Abstr. 1970, 73, 14874g.
 (13) Fujii, K.; Tomino, K.; Watanabe, H. Yakugaku Zasshi 1954, 74, 1049.
 (14) Morren, H. G. Brit. Patent 817,231; Chem. Abstr. 1960, 54, 9970.
 (15) Ciba-Geigy Corp. U. S. Patent 4,261,990; Chem. Abstr. 1981, 95, 80209z.
 (16) Macarty, F. J.; Tilford, C. H.; Van Campen, M. G., Jr. J. Org. Chem. 1961, 26, 4084.
 (17) Union Chimique-Chemische Bedrijven, S. A. Ger. Offen. 2,016,667; Chem. Abstr. 1971, 74, 13015m.
 (18) Baumgarten, P.; Dormow, A. Ber. 1939, 72, 563.
 (19) Aktiebolaget Astra, U. S. Patent 3,637,714; Chem. Abstr. 1976, 84, 43861h.
 (20) Bachman, G. B.; Micucci, D. D. J. Am. Chem. Soc. 1948, 70, 2381.
 (21) Urban, R.; Schnider, O. Helv. Chim. Acta 1964, 47, 363.
 (22) Castle, R. N.; Whittle, C. W. J. Org. Chem. 1959, 24, 1189.
 (23) Plattner, J. J.; Gless, R. D.; Cooper, G. K.; Rapoport, H. J. Org. Chem. 1974, 39, 303.
 (24) Kato, T.; Noda, M. Chem. Pharm. Bull. 1976, 24, 303.

[^4]: (33) Levy, D. A.; Osler, A. G. J. Immunol. 1966, 97, 203.
 (34) Shore, P. A.; Burkhalter, A.; Cohn, V. H., Jr. J. Pharmacol. Exp. Ther. 1959, 127, 182.
 (35) Emmerson, J.; Mackay, D. J. Pharm. Pharmacol. 1979, 31, 798.

[^5]: (1) Tomcufcik, A. S.; Meyer, W. E.; Dusza, J. P. U.S. Patent 4,421,753, 1983.
 (2) Scriabine, A.; Constantine, J. W.; Hess, H.-J.; McShane, N. K. Experientia 1968, 24, 1150.
 (3) Schaper, W. K. A.; Xhonneux, R.; Jageneau, A. H. M.; Janssen, P. A. J. J. Pharmacol. Exp. Ther. 1966, 152, 265.
 (4) Schoetensack, V. W.; Bischler, P.; Dittmann, E. Ch.; Steinijans, V. Arzneim.-Forsch. 1977, 27(II), 1908.
 (5) Servier, J. Chem. Abstr. 1964, 60, $2972 h$.

